
Homogenization of two-phase elasto-plastic
composite materials and structures

Study of tangent operators, cyclic plasticity and numerical
algorithms

I. Doghri *, A. Ouaar
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Abstract

We develop homogenization schemes and numerical algorithms for two-phase elasto-plastic composite materials and

structures. A Hill-type incremental formulation enables the simulation of unloading and cyclic loadings. It also allows

to handle any rate-independent model for each phase. We study the crucial issue of tangent operators: elasto-plastic (or

‘‘continuum’’) versus algorithmic (or ‘‘consistent’’), and anisotropic versus isotropic. We apply two methods of ex-

traction of isotropic tangent moduli. We compare mathematically the stiffnesses of various tangent operators. All rate

equations are discretized in time using implicit integration. We implemented two homogenization schemes: Mori–

Tanaka and a double inclusion model, and two plasticity models: classical J2 plasticity and Chaboche�s model with

non-linear kinematic and isotropic hardenings. We consider composites with different properties and present several

discriminating numerical simulations. In many cases, the results are validated against finite element (FE) or experi-

mental data. We integrated our homogenization code into the FE program ABAQUS using a user material interface

UMAT. A two-scale procedure allows to compute realistic structures made of non-linear composite materials within

reasonable CPU time and memory usage; examples are shown.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we present homogenization models and robust numerical algorithms for two-phase elasto-

plastic composites. We use the generic term of ‘‘inclusions’’ to designate the reinforcing phase. The in-

clusions can be particles, fibers (long or short) or platelets. Actually, all those shapes can be generated by
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setting appropriate values to the aspect ratio of a spheroid (i.e., an ellipsoid with an axis of revolution).

There are many industrial examples of the composites we study in this paper, as illustrated hereafter.

• Polymer matrix composites (PMCs) reinforced with ceramic, glass or Kevlar fibers. Objective: improve
stiffness and strength. Examples: boat hulls, aircraft wings, cars (body frames, hood and door panels),

sporting equipment.

• Polymer matrix with low modulus rubber particles. Objective: improve toughness and impact resistance.

Example: car bumpers.

• Rubber matrix with carbon-black particles. Objective: improve toughness and stiffness. Example: tires.

• Metal matrix composites (MMCs) with ceramic particles or short fibers. Objective: mainly high-tempe-

rature applications. Example: fossil-fuel engine components (e.g., turbochargers).

• Concrete matrix with: metallic fibers (strength in tension or bending), polymer or natural fibers (better
ductility, lower density), rubber inclusions (impact resistance, acoustic isolation).

In all those cases, we wish to predict the influence of the microstructure on the overall properties of the

material or the product. An elegant solution is provided by a micro/macro or two-scale approach with a

macro-scale (that of the body) and a micro-scale (the heterogeneous microstructure). In this paper, tran-

sition between the two scales is made via average-field theories, also known as homogenization models.

One could use another approach: direct FE computation of the boundary-value problem (BVP) at each

representative volume element (RVE). This is feasible for linear elasticity––e.g. (PALMYRA, 2001)––where
the problem is reduced to computing a constant macro-stiffness. The method is also very useful for vali-

dating homogenization models (as we do in this work) or for studying heterogeneous media with complex

material behavior, e.g. (Kouznetsova et al., 2002). However, the direct approach becomes way too ex-

pensive if one or more of the following conditions are met: (1) material or geometric non-linearities; (2)

non-periodic or complex microstructures (e.g., RVEs containing hundreds of fibers in different orienta-

tions); (3) two-scale finite element (FE) simulation of realistic structures (a micro-FE mesh has to be at-

tached to each quadrature point of the macro-mesh). In the latter case, the method requires much more

computer power than what is usually available to engineers or researchers.
For elasto-plastic two-phase composites, a good deal of the literature on homogenization revolves

around the method proposed in (Tandon and Weng, 1988), a Mori–Tanaka (MT) scheme (Mori and

Tanaka, 1973) restricted to J2 elasto-plasticity with a ‘‘secant’’ (or total) deformation formulation. This

precludes the use of other rate-independent models or a simulation of unloading.

Our aim in this work is to develop a formulation and the corresponding numerical algorithms which are

able to simulate within reasonable accuracy, computer time and memory: (1) any rate-independent model

for either phase; (2) cyclic loadings; (3) any multi-axial stress state; (4) structures made of composite

materials.
We address the important issue of tangent operators in elasto-plasticity and their impact on overall

predictions in detail. Indeed, we study anisotropic operators (‘‘continuum’’ and algorithmic), isotropic

moduli (computed with two methods) and the relative stiffnesses of those various operators.

Those issues were not studied in the incremental formulation of MT model which was recently proposed

in (Pettermann et al., 1999). However, that reference deals with thermal strains and contains several in-

teresting numerical simulations for fiber-reinforced materials, while the simulations presented in this paper

are restricted to isothermal conditions and spherical inclusions (validation for other shapes is a work in

progress: (Friebel, 2002; Doghri and Friebel, 2003)).
The paper has the following outline. In Section 2 we present some mathematical notation and results

which are needed in the remainder of the article. We present anisotropic continuum and consistent tangent

operators for two elasto-plastic models (J2 and Chaboche�s cyclic plasticity) in Section 3. We present two

methods of extraction of the isotropic part of tangent operators in Section 4. A stiffness comparison of
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various tangent operators is carried out in Section 5. We show how to extend homogenization models from

linear elasticity to rate-independent non-linear material behavior in Section 6. The MT model and its

numerical implementation using implicit algorithms are presented in Section 7, while Section 8 gives similar

information for the double inclusion (DI) model. Numerical simulations of three composite materials under
various loadings are presented in Section 9. Two-scale numerical simulations of two composite structures

are presented in Section 10. Finally, conclusions and directions for future work are discussed in Section 11.

In many cases, numerical predictions are compared against FE results or experimental data.

2. Preliminaries

In this section, we define some notations and give some results which are needed later.
Boldface symbols denote tensors, the order of which is indicated by the context. Einstein�s summation

convention over repeated indices is used unless otherwise indicated:

aikbkj �
X3
k¼1

aikbkj

Dots and colons are used to indicate tensor products contracted over one and two indices, respectively:

u � v ¼ uivi; ða � uÞi ¼ aijuj;

ða � bÞij ¼ aikbkj; a : b ¼ aikbki;

ðC : aÞij ¼ Cijklalk; ðC : DÞijkl ¼ CijmnDnmkl:

Tensor products are designated by �, e.g.,
ðu� vÞij ¼ uivj; ða� bÞijkl ¼ aijbkl:

The symbols 1 and I designate the second- and fourth-order symmetric identity tensors, respectively,

1ij ¼ dij; Iijkl ¼
1

2
ðdikdjl þ dildjkÞ; ð1Þ

where dij is Kronecker�s symbol,

dij ¼ 1 if i ¼ j; dij ¼ 0 if i 6¼ j: ð2Þ
The spherical and deviatoric operators are Ivol and Idev, respectively,

Ivol � 1

3
1� 1; Idev � I 	 Ivol; ð3Þ

so that for aij ¼ aji we have:

Ivol : a ¼ 1

3
amm1; Idev : a ¼ a	 1

3
amm1 � devðaÞ: ð4Þ

Hooke�s elasticity operator is designated by cel. In the isotropic case, it is given by

cel ¼ 3jIvol þ 2lIdev; ð5Þ

where j and l are the elastic bulk and shear moduli, respectively.
For C and D any fourth-order tensors, define the following scalar invariant (Bornert et al., 2001b,

p. 178):

C :: D � CijklDlkji ¼ D :: C : ð6Þ
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Using the definition, the following results are easily obtained:

I vol :: Ivol ¼ 1; Idev :: Idev ¼ 5; Ivol :: Idev ¼ 0: ð7Þ
Any symmetric and isotropic fourth-order tensor ciso is a linear combination of I and (1� 1) or, al-

ternatively, of I vol and Idev. Using the previous results, it is found that ciso can be written as follows (Bornert

et al., 2001b, p. 185):

ciso ¼ ðIvol :: cisoÞIvol þ 1

5
ðIdev :: cisoÞIdev: ð8Þ

The notation C\P "D comparing two fourth-order tensors C and D means ‘‘stiffer than’’ and is defined as

follows:

C\P "D() a : C : aP a : D : a; 8a second-order symmetric tensor ðaij ¼ ajiÞ: ð9Þ
In a micro–macro-approach, at each macro-point x, we know the macro-strain �ðxÞ and need to

compute the macro-stress rðxÞ, or vice-versa. At micro-level, the macro-point is viewed as the center of a
RVE with domain x and boundary ox. It can be shown (e.g., Section 2 in (Nemat-Nasser and Hori, 1999))

that if linear boundary conditions (BCs) are applied to the RVE, then the problem of relating macro-strains

and stresses � and r can be transformed onto that of relating average strains and stresses h�i and hri over
the RVE.

We consider two-phase composites: a number of inclusions (I) in a matrix. The matrix––phase (0)––has

volume V0 and volume fraction v0 ¼ V0=V , where V is the volume of the RVE. The inclusions––phase (1)––

have a total volume V1 ¼
P

I VI and a volume fraction v1 ¼ V1=V ¼ 1	 v0. Define the following volume

averages:

hf i � 1

V

Z
x
f ðx; xÞdV ; hf ixi

� 1

Vi

Z
xi

f ðx; xÞdVi ; i ¼ 0; 1; ð10Þ

where integration is carried out w.r.t. micro-coordinates x. In the following, dependence on macro-coor-

dinates x will be omitted for simplicity. It is easy to check that the averages over x (the entire RVE), x0 (the

matrix phase) and x1 (the inclusions phase) are related by

hf i ¼ v1hf ix1
þ ð1	 v1Þhf ix0

: ð11Þ

The strain averages per phase are related by a strain concentration tensor B� as follows:

h�ix1
¼ B� : h�ix0

: ð12Þ

Various homogenization models will differ by the expression of B�. The per-phase average strains are re-

lated to the macro-strain h�i by

h�ix0
¼ ½v1B� þ ð1	 v1ÞI �	1 : h�i;

h�ix1
¼ B� : ½v1B� þ ð1	 v1ÞI �	1 : h�i:

ð13Þ

Except for the simplest models––Voigt (uniform strain) and Reuss (uniform stress)––the others are based

on the fundamental solution of Eshelby (1957). That solution in turn allows to solve the problem of a single

ellipsoidal inclusion (I) of uniform moduli c1 which is embedded in an infinite matrix of uniform moduli c0.
Under a remote uniform strain � (i.e., linear boundary displacements), it is found (e.g., Chapter 4 in (Mura,

1987), Section 7 in (Nemat-Nasser and Hori, 1999), Chapter 9 in (Lielens, 1999)) that the strain field inside

the ellipsoid is uniform and related to the remote (or ‘‘macro’’) strain by

�ðxÞ ¼ H �ðI ; c0; c1Þ : � 8x 2 ðIÞ; ð14Þ
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where the single inclusion strain concentration tensor H � has the following expression:

H �ðI ; c0; c1Þ ¼ fI þ EðI;c0Þ : ½ðc0Þ
	1 : c1 	 I �g	1; ð15Þ

where EðI ; c0Þ is Eshelby�s tensor and depends on the geometry of (I) and c0. For a spheroid (I) and an

isotropic stiffness c0, E only depends on the aspect ratio and Poisson’s ratio m (Chapter 2 in (Mura, 1987)). If

the moduli are anisotropic, then E is computed numerically (for that purpose, we used a code which was
kindly provided by Lagoudas based on his paper (Gavazzi and Lagoudas, 1990)).

In this paper, we consider two-phase composites where the inclusions (I) have the same shape, orien-

tation and stiffness c1 (more general cases are being implemented and tested: (Friebel, 2002; Doghri and

Friebel, 2003)). For any homogenization model defined by B�––Eq. (12)––the macro-stiffness c is given by

c ¼ ½v1c1 : B� þ ð1	 v1Þc0� : ½v1B� þ ð1	 v1ÞI �	1: ð16Þ

Finally, for time discretization, the symbol D designates an increment over a typical time (or time-like)

interval ½tn; tnþ1�,
Dð�Þ � ð�Þnþ1 	 ð�Þn: ð17Þ

For simplicity of notation, the subscript (nþ 1) will be omitted and all variables which do not have this

subscript are computed at tnþ1.

3. Anisotropic tangent operators

For elasto-plastic materials, one can define at least two tangent operators: a ‘‘continuum’’ and a

‘‘consistent’’ one. Those anisotropic operators can have an important impact on the numerical predictions,

because homogenization models depend explicitly on their expressions.

3.1. Continuum and consistent tangent operators

Using the constitutive equations in rate form, it is possible to relate stress and total strain rates as

follows:

_rr ¼ cep : _��; ð18Þ

where cep is called the ‘‘continuum’’ (or elasto-plastic) tangent operator. The ‘‘consistent’’ (or algorithmic)

tangent operator is found as follows. First, the rate constitutive equations are discretized in time over each

time interval ½tn; tnþ1�. Next, the algebraic equations thus found are differentiated w.r.t. all the variables at

tnþ1 and the variations of stress and total strain are related as follows:

drnþ1 ¼ calg : d�nþ1: ð19Þ

Designating by (Dp) the plastic multiplier increment, it is found that:

calg ! cep if Dp! 0;

but otherwise calg and cep can be quite different. In the context of macro-elasto-plasticity, Simo and Taylor

(1985) have shown that if the global equilibrium equations are solved using Newton�s method, then a

quadratic rate of convergence is achieved when using calg instead of cep.
In this paper, we show in Section 5 another result, that is that the elasto-plastic tangent operator cep is

stiffer than the algorithmic tangent calg. This result can have an impact on homogenization results as will be

seen in Section 9.1.
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3.2. J2 elasto-plasticity

The constitutive equations for classical J2 elasto-plasticity are:

r ¼ cel : ð�	 �pÞ; f ¼ req 	 RðpÞ 	 rY 6 0;

_��p ¼ _ppN ; _ppP 0; _ppf ¼ 0; _pp _ff ¼ 0; N ¼ of
or
¼ 3

2

devðrÞ
req

;
ð20Þ

where rY > 0 is the initial yield stress, pP 0 the accumulated plastic strain, RðpÞP 0 the hardening stress,

req P 0 the von Mises measure of r and N the normal to the yield surface in stress space. The ‘‘continuum’’

tangent is given by (Section 12.7 in (Doghri, 2000)):

cep ¼ cel 	 ð2lÞ
2

h
N �N ; h ¼ 3lþ dR

dp|{z}
R0ðpÞ

> 0: ð21Þ

The ‘‘consistent’’ moduli are given by (Section 12.10.3 in (Doghri, 2000))

calg ¼ cep 	 ð2lÞ2ðDpÞ req

rtr
eq

oN

or
;

oN

or
¼ 1

req

3

2
Idev

�
	N �N

	
; ð22Þ

with rtr
eq a trial (elastic predictor) value of req. Note that although the constitutive model is isotropic, both

tensors cep and calg are anisotropic.

3.3. Chaboche’s cyclic plasticity model

We now consider an elasto-plastic model with non-linear kinematic and isotropic hardenings which is

successful in predicting cyclic plasticity of metals, including the Baushinger effect. The model was initially

proposed by Armstrong and Frederick (1966) and later developed and made popular by Chaboche (see

Chapter 5 in (Lemaitre and Chaboche, 1998)). The constitutive equations are:

r ¼ cel : ð�	 �pÞ; f ¼ beq 	 RðpÞ 	 rY 6 0;

_��p ¼ _ppN ; _XX ¼ a _��p 	 bX _pp;

_ppP 0; _ppf ¼ 0; _pp _ff ¼ 0; N ¼ of
or
¼ 3

2

b

beq

;

ð23Þ

where a > 0 and bP 0 are kinematic hardening parameters, X is a back stress (kinematic hardening),

b � devðrÞ 	 X and beq the von Mises measure of b.
The ‘‘continuum’’ (or elasto-plastic) tangent is given by (Doghri, 1993)

cep ¼ cel 	 ð2lÞ
2

h
N �N ; h ¼ 3lþ R0ðpÞ þ 3

2
a	 bN : X : ð24Þ

The consistent (algorithmic) tangent operator is given by (Doghri, 1993)

calg ¼ cmod 	 ðDpÞð2lÞ
2

½1þ ð3=2Þg�
oN

ob
	 ðDpÞð2lÞ

2

½1þ ð3=2Þg� �
b

ð1þ bDpÞ2
1

beq

1

halg
3

2
Xn



	 ðN : XnÞN

�
�N ; ð25Þ
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where cmod is the ‘‘modified’’ continuum tangent operator:

cmod ¼ cel 	 ð2lÞ
2

halg
N �N ;

halg � 3lþ R0ðpÞ þ 1

ð1þ bDpÞ2
3

2
a

�
	 bN : Xn

	
;

g � 2l

�
þ a
1þ bDp

	
Dp
beq

:

ð26Þ

Again, both tangent operators cep and calg are anisotropic.

4. Isotropic part of tangent operators

Numerical experience has shown that good predictions are obtained only when Eshelby’s tensor is

computed not with an anisotropic tangent operator (calg or cep) but with isotropic moduli (ciso). The general
expression of the latter is (by design) form-similar to that of Hooke�s operator in isotropic linear elasticity:

ciso ¼ 3jtI
vol þ 2ltI

dev; ð27Þ
where jt and lt are ‘‘tangent’’ bulk and shear moduli, resp. Moreover, for a spheroid and isotropic moduli,

Eshelby�s tensor only needs the ‘‘tangent’’ Poisson�s ratio mt:

mt ¼
3jt 	 2lt

2ð3jt þ ltÞ
ð28Þ

The way in which an isotropic part (ciso) is extracted from an anisotropic operator (cani) is not unique; we
present hereafter two methods which we tried successfully.

4.1. First method: spectral decomposition

This first method applies to anisotropic tangent operators which are a linear combination of Ivol, Idev and
(N �N), where N is typically a normal to a yield surface in stress space and satisfies:

Nij ¼ Nji; Nmm ¼ 0; N : N ¼ 3

2
: ð29Þ

For J2 plasticity, both tensors cep and calg satisfy all conditions. For Chaboche�s cyclic plasticity model, the

conditions apply to cep in all cases and to calg only when b ¼ 0 (linear kinematic hardening). For those

anisotropic operators cani, Ponte Casta~nneda (1996) proposes to re-write them as follows:

cani ¼ 3k1C
ð1Þ þ 2k2C

ð2Þ þ 2k3C
ð3Þ; ð30Þ

where

C ð1Þ ¼ Ivol; C ð3Þ ¼ 2

3
N �N ; C ð2Þ ¼ Idev 	 C ð3Þ: ð31Þ

Those tensors satisfy the following conditions:

C ð1Þ þ C ð2Þ þ C ð3Þ ¼ I ; C ðiÞ : C ðjÞ ¼ dijC
ðiÞ ðno sum over iÞ: ð32Þ

This is why Eq. (30) is known as a spectral decomposition of cani. A basic assumption in the method is the

following:

devðD�Þ is collinear with N : ð33Þ
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It is found then that the incremental stress–strain relation Dr � cani : D� reduces to Dr � ciso : D�, where ciso

is an isotropic operator defined by

jt ¼ k1; lt ¼ k3: ð34Þ

An application to algorithmic moduli calg of J2 plasticity gives:

jt ¼ j; lt ¼ l 1



	 3l

h

�
; k2 ¼ l 1

"
	 3l

Dp
rtr
eq

#
: ð35Þ

There are some comments to be made. First, the k2 term disappeared from ciso and (Dp) with it, therefore

any advantage of consistent vs. continuum tangent is lost. Second, the basic assumption (33) may lead to

bad results for non-proportional loadings. Finally, for Chaboche�s model, when b 6¼ 0, calg is such that

Eq. (30) does not apply, and using only the other assumption of the method––Eq. (33)––does not give an

isotropic operator.

4.2. Second method: a general definition

This second method is much more general than the first one and can be applied to any anisotropic

operator cani (even if it does not represent material moduli). By analogy with decomposition (8)––which is

exact for isotropic operators––it is suggested to define an isotropic part ciso of cani as follows (Bornert et al.,
2001a, p. 194):

ciso � ðIvol :: caniÞIvol þ 1

5
ðIdev :: caniÞIdev: ð36Þ

This definition can be coded as an independent module which acts as a post-processor for any constitutive

box, without knowledge of the particular model or code that the box contains. Indeed, one can check the

following expressions:

Ivol :: cani ¼ 3jt ¼
1

3
canilljj;

Idev :: cani ¼ 10lt ¼ caniilli 	
1

3
canilljj:

ð37Þ

An application to moduli calg of J2 plasticity gives:

jt ¼ j; lt ¼ l	 3

5
l2 1

h

"
þ 4

Dp
rtr
eq

#
: ð38Þ

The expression of lt is different from that found with the first method, Eq. (35). However, our experience so

far has shown that using one definition or the other does not have a significant impact on homogenization
results.

For Chaboche�s cyclic plasticity model, the isotropic part of calg is determined by its tangent moduli as

follows:

jt ¼ j; lt ¼ l	 3

5
l2 1

halg

"
þ 4

Dp
beq

1

1þ ð3=2Þg

#
: ð39Þ

Note that with this second method, lt is a function of the plasticity increment Dp, and therefore the iso-

tropic parts of the consistent and continuum tangent operators are different, even for J2 elasto-plasticity.

1688 I. Doghri, A. Ouaar / International Journal of Solids and Structures 40 (2003) 1681–1712



5. Stiffness comparison of various tangent operators

We shall see in Section 9.1 that evaluating Eshelby�s tensor with anisotropic (cep or calg) or isotropic (ciso)
tangent operators has a major impact on homogenization results. This might be traced back to the relative
stiffnesses of those operators. Therefore, in this section we set up to prove the following inequalities for J2
plasticity:

cel\P "cep\P "calg\P "ciso; ð40Þ

where the symbol \P " means ‘‘stiffer than’’ and is defined in Eq. (9). The first inequality (cel\P "cep) just
translates the experimental fact that the elastic stiffness is larger than any elasto-plastic tangent; it implies

that h > 0 (see Section 12.7 in (Doghri, 2000)).

We now prove the second inequality (cep\P "calg). From Sections 3.2 and 4.1, it is found that (g desig-
nating any second-order symmetric tensor):

g : ðcep 	 calgÞ : g ¼ 6l2 Dp
rtr
eq

 !
ðg : C ð2Þ : gÞ ð41Þ

This is the product of two terms, the first of which is always positive. As for the second term, introducing

the following decomposition,

devðgÞ ¼ kN þ g? ð42Þ

it can be checked that:

g : C ð2Þ : g ¼ g? : C ð2Þ : g?: ð43Þ

Using the expressions of C ð2Þ, cel and cep, it is found that:

g? : C ð2Þ : g? ¼ 1

2l
g? : cel



	 1

�
þ R0ðpÞ

3l

	
ðcel 	 cepÞ

�
: g?: ð44Þ

In practice, jR0ðpÞj=ð3lÞ � 1, therefore the final result is:

g : ðcep 	 calgÞ : g � 3l
Dp
rtr
eq

 !
ðg? : cep : g?Þ; ð45Þ

where the first term is always positive, and the second also for a strain-hardening material (no softening).

Therefore we proved that cep is stiffer than calg.
We now prove the last inequality (calg\P "ciso). Using results from Sections 3.2 and 4.1, it is found that:

g : ðcalg 	 cisoÞ : g ¼ ð6l2Þ 1

h

 
	 Dp

rtr
eq

!
ðg : C ð2Þ : gÞ: ð46Þ

In this product of three scalar factors, we have already proven that the last factor is positive. As for the
second factor, it can be rewritten as follows using Eq. (21)b:

1

h
	 Dp

rtr
eq

¼
ðrtr

eq 	 3lDpÞ 	 R0ðpÞDp
hrtr

eq

: ð47Þ

The denominator is positive (since h > 0 and rtr
eq > 0). As for the numerator, the return mapping algorithm

used to update the constitutive solution (Section 12.10.2 of (Doghri, 2000)) allows to find the following

expression:
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ðrtr
eq 	 3lDpÞ 	 R0ðpÞDp ¼ rY þ RðpÞ 	 R0ðpÞDp: ð48Þ

Now a first-order Taylor expansion of RðpÞ around pn gives

RðpÞ � RðpnÞ þ ðDpÞR0ðpnÞ: ð49Þ

Consequently, we obtain:

rY þ RðpÞ 	 R0ðpÞDp � rY þ RðpnÞ þ ðDpÞ½R0ðpnÞ 	 R0ðpÞ� > 0: ð50Þ

This is a sum of positive scalars because rY, RðpnÞ and Dp are all positive and R0ðpnÞ > R0ðpÞ from experi-

mental evidence. Therefore, we proved that calg is stiffer than ciso.

6. Incremental formulation of homogenization models

6.1. Reference moduli

An extension of homogenization models from linear elasticity to rate-independent non-linear behavior

(e.g, elasto-plasticity, non-linear elasticity, etc.) is provided by Hill�s so-called incremental formulation
(Hill, 1965). Indeed, stress and strain rates are related by: _rr ¼ c : _��, which is form-similar to linear elasticity

except that we are using rates and a tangent operator c which should not be confused with Hooke�s operator
cel. Moreover, c will not be uniform, because at any time t, it depends on the state of strain or stress. For

history-dependent models, it also depends on internal variables and has different expressions according to

loading or unloading. Therefore, in the matrix of a composite we have:

_rrðx; tÞ ¼ c0ð�ðx; tÞ; tÞ : _��ðx; tÞ 8x 2 x0:

Consequently, it does not make sense for instance to evaluate Eshelby�s tensor E using c0ðx; tÞ. A work

around is to consider a fictitious reference matrix which has uniform tangent moduli ĉc0ðtÞ:

_rrðx; tÞ ¼ ĉc0ðtÞ : _��ðx; tÞ 8x 2 x0: ð51Þ

The difficult question of course is how to define the reference material and relate ĉc0ðtÞ to the real

composite. Tandon and Weng (1988) developed a secant (or total deformation) formulation of MT model

in which average strains in the matrix phase are used to compute the response of a reference material. This

approach was followed by many researchers in the field. So similarly, in our incremental formulation of

MT, the constitutive box of the real material in each phase is called with the average strains and strain rates

in that phase, and the moduli that the box computes are taken as the reference moduli for that phase.
However, our formulation and implementation are generic and modular enough to allow other reference

moduli to be used in the future as long as they are computable and the final numerical results agree rea-

sonably well with experimental data or FE simulations.

There is no unique definition for a reference material, and there is still active research in this subject (e.g.,

see (Bornert et al., 2001b; Suquet, 1997; Ponte Casta~nneda and Suquet, 1998, 2001) and references therein).

However, the suggestions which are available so far in the literature are either valid for a total deformation

theory (which precludes unloading) or hard-wired to J2 elasto-plasticity or are too complex to implement

efficiently.
In Section 9.2 (Fig. 6) there is a comparison between our results and those obtained by Suquet�s model in

which a reference material is defined by taking the phase-average of the second moments of the stress.
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6.2. Time discretization

Rate relations such as the rate version of (12) are discretized over a time interval ½tn; tnþ1� as follows:
hD�ix1

¼ B�
nþa : hD�ix0

;

where a generalized mid-point rule is used:

ð�Þnþa ¼ ð�Þðt¼tnþaÞ; tnþa ¼ ð1	 aÞtn þ atnþ1; a 2 ½0; 1�: ð52Þ
Explicit and implicit integrations correspond to a ¼ 0 and a > 0, respectively, with special cases: a ¼ 1
(backward Euler) and a ¼ 1=2 (mid-point rule). In this paper, good predictions were obtained with a ¼ 1=2
(in most cases) or a ¼ 2=3 (which sometimes allows to take larger time increments for a given accuracy).

6.3. Tangent operators

In Sections 7.2 and 8.2, it is important to notice that only Eshelby’s tensor is computed with the isotropic

part of the reference moduli, all other computations are performed with the anisotropic algorithmic moduli.

This insures a good convergence of the whole procedure, i.e.: (i) the homogenization algorithms (Sections
7.2 and 8.2), (ii) the algorithm for macro-stress constraints (Section 6.4) and (iii) the FE computations at

macro-scale (Section 10).

6.4. Macro-stress constraints

Macro-stress constraints are handled as in Section D.2 of (Doghri, 2000). Assume for instance that we

need to simulate a macro-tension/compression test in the one-direction. In this case, at each time tnþ1, �11 is
known but �22 and �33 need to be computed from the following conditions:

r22ð�22; �33Þ ¼ 0; r33ð�22; �33Þ ¼ 0: ð53Þ
This is a system of two non-linear scalar equations, which is solved iteratively using Newton�s method. For

each iteration (m), we have:

rðmÞii þ cðmÞii22 �
ðmþ1Þ
22

�
	 �

ðmÞ
22

�
þ cðmÞii33 �

ðmþ1Þ
33

�
	 �

ðmÞ
33

�
¼ 0; no sum; ii ¼ 22; 33: ð54Þ

Convergence is achieved if jr22j and jr33j are smaller than a tolerance. This means that there is an outer loop

around the homogenization algorithms of Sections 7.2 and 8.2 which for each time interval ½tn; tnþ1� and
each iteration (m) passes macro-strain values �

ðmÞ
ij .

7. Mori–Tanaka model

7.1. Formulation

The MT model was proposed by Mori and Tanaka (1973) and is such that the strain concentration

tensor––Eq. (12)––has the following expression (see also Chapter 9 in (Lielens, 1999)):

B� ¼ H �ðI ; c0; c1Þ; ð55Þ
where operator H � is that of the single inclusion problem, Eq. (15). Consequently, Benveniste (1987) has

proposed the following useful interpretation of the MT model: each inclusion (I) behaves like an isolated

inclusion in the matrix seeing h�ix0
as a far-field strain. The incremental extension of MT to non-linear rate-

independent models gives:

h _��ix1
¼ H �

ðI ;ĉc0;ĉc1Þ : h _��ix0
: ð56Þ
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Benveniste�s interpretation of this result would be that each inclusion (I) behaves like an isolated in-

clusion in the reference matrix seeing h _��ix0
as a far-field strain rate. The macro-tangent moduli c in MT

model will be found as follows:

h _rri ¼ c : h _��i;

c ¼ v1ĉc1 : H
�
ðI ;ĉc0;ĉc1Þ

h
þ ð1	 v1Þĉc0

i
: v1H

�
ðI;ĉc0;ĉc1Þ

h
þ ð1	 v1ÞI

i	1
:

ð57Þ

7.2. Numerical implementation

Consider a time interval ½tn; tnþ1�. The data are: macro-total strains �n and D�, and history variables at tn.
The problem is to compute macro-stress r and macro-tangent moduli c.

• Initialization: hD�ix1
 D�.

• Iterations (i) (upper index (i) omitted for simplicity):

11. Call constitutive box of real inclusions material with average strains in the inclusions phase h�nix1

and hD�ix1
as arguments. Take the algorithmic (and anisotropic) moduli ĉc1 that the box returns

as reference moduli for the inclusions phase.

12. Compute average strain in matrix phase:

hD�ix0
¼

D�	 v1hD�ix1

1	 v1
:

13. Call constitutive box of real matrix material with average strains in the matrix phase h�nix0
and

hD�ix0
as arguments. Take the algorithmic (and anisotropic) moduli ĉc0 that the box returns as refe-

rence moduli for the matrix phase.

14. Extract isotropic part ĉciso0 from reference matrix moduli ĉc0.
15. Compute Eshelby�s tensor with those isotropic moduli: EðI ; ĉciso0 Þ.
16. Compute values at tnþa of the anisotropic moduli ĉc0 and ĉc1:

ĉcrðnþaÞ ¼ ð1	 aÞĉcrðnÞ þ aĉcr; r ¼ 0; 1; a 2�0; 1�

(Our experience so far showed that robust and accurate numerical simulations are obtained with

a ¼ 1=2 (mid-point rule) or a ¼ 2=3.)
17. Compute strain concentration tensor

B� ¼ fI þ E : ½ðĉc0ðnþaÞ Þ
	1

: ĉc1ðnþaÞ 	 I �g	1:

18. Check compatibility of average strain in inclusions phase by computing residual:

R ¼ B� : ½v1B� þ ð1	 v1ÞI �	1 : D�	 hD�ix1
:

19. If jRj6TOL, then exit the loop.

10. Else: new iteration (go to step 1) with new hD�ix1
:

hD�ix1
 hD�ix1

þ nR; n 2�0; 1�

(n is a line search parameter; all the numerical simulations that we ran so far used a value of n ¼ 1.)

• After convergence, compute macro-moduli cnþa and macro-stress increment Dr:

cnþa ¼ ½v1ĉc1ðnþaÞ : B
� þ ð1	 v1Þĉc0ðnþaÞ � : ½v1B

� þ ð1	 v1ÞI �	1;

Dr ¼ cðnþaÞ : D�:
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8. Double inclusion model

8.1. Formulation

The DI model was proposed by Nemat-Nasser and Hori (1999, Section 10)––see also Chapter 9 in

(Lielens, 1999)––and supposes that each spheroidal inclusion (I)––of stiffness c1––is wrapped with a hollow

inclusion (I0) of stiffness c0. The outer material has a stiffness cR. Inclusions (I) and (I0) have the same aspect

ratio, symmetry axis and center, and their volume ratio equals that of inclusions and matrix in the actual

composite (v1=v0).
By changing the stiffness cR of the outer material, one can retrieve many homogenization models. The

choice cR ¼ c gives the self-consistent model. A second choice is cR ¼ c0, the stiffness of the real matrix

material. In this case, it can be shown that the strain concentration tensor––Eq. (12)––is given by

B� ¼ H �ðI ; c0; c1Þ � B�
l; ð58Þ

i.e., the MT model. A third choice is cR ¼ c1, the stiffness of the real inclusions (I). In this case, it is found

that:

B� ¼ ½H �ðI ; c1; c0Þ�	1 � B�
u; ð59Þ

and this can be called the inverse MT model, as it corresponds to MT for a composite where the material

properties of the inclusions and the matrix are permutated. It can be shown that B�
l and B�

u correspond to

lower and upper stiffness estimates, respectively, which are closely related to the Hashin–Shtrikman bounds

(Hashin and Shtrikman, 1963). Consequently, Lielens (Chapter 9 in (Lielens, 1999)) proposed a homo-

genization model which is based on the following interpolation:

B� ¼ ½ð1	 fðv1ÞÞðB�
lÞ
	1 þ fðv1ÞðB�

uÞ
	1�	1; ð60Þ

where fðv1Þ is a smooth interpolation function which satisfies:

fðv1Þ > 0;
df
dv1
ðv1Þ > 0; lim

v1!0
fðv1Þ ¼ 0; lim

v1!1
fðv1Þ ¼ 1: ð61Þ

Lielens proposed the following expression for fðv1Þ:

fðv1Þ ¼
1

2
v1ð1þ v1Þ: ð62Þ

In the remainder of the paper, ‘‘DI’’ means Lielens� interpolation model thus defined.

8.2. Numerical implementation

The implementation of DI model is very similar to that of MT, and the only changes in the algorithm of

Section 7.2 are in steps 4, 5 and 7 which now become as follows:

4. Extract isotropic parts ĉciso0 and ĉciso1 from reference moduli of the matrix and inclusions, ĉc0 and ĉc1, respec-
tively.

5. Compute Eshelby�s tensors with those isotropic moduli:

E0 � EðI ; ĉciso0 Þ; E1 � EðI ; ĉciso1 Þ:
7. Compute strain concentration tensors:

B�
l ¼ fI þ E0 : ½ðĉc0ðnþaÞ Þ

	1
: ĉc1ðnþaÞ 	 I �g	1;
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B�
u ¼ I þ E1 : ½ðĉc1ðnþaÞ Þ

	1 : ĉc0ðnþaÞ 	 I �;

B� ¼ ½ð1	 fðv1ÞÞðB�
l Þ
	1 þ fðv1ÞðB�

uÞ
	1�	1:

9. Numerical simulations of RVEs

We developed a code called DIGIMAT (for ‘‘Digital Materials’’) in which we implemented two homo-

genization schemes: MT and DI and two material models: J2 elasto-plasticity and Chaboche�s cyclic plas-

ticity. Those models can be used for any phase of a composite material. The inclusions can be spheres or

spheroids with any aspect ratio. All RVE simulations with DIGIMAT reported in this paper took less than

1 s of CPU time on an ordinary PC. For validation purposes, we conducted direct FE computations on a

unit cell using ABAQUS (2001)––see Appendix A.

9.1. Time-integration and tangent operators

Figs. 1–3 show numerical simulations with MT of macro-tension tests under imposed macro-strain for a

MMC with a J2 elasto-plastic matrix and v1 ¼ 20% of elastic spherical inclusions (complete material data
are given in Section 9.2). Figs. 1 and 2 are obtained with Eshelby�s tensor computed with tangent moduli

ĉcalg0 for two values of the integration parameter: a ¼ 1 (backward Euler) in Fig. 1 and a ¼ 1=2 (mid-point

rule) in Fig. 2. It is seen that in the latter case, the results are insensitive to the value of the macro-strain

increment. Fig. 3 compares the results obtained using Eshelby�s tensor computed with the anisotropic

tangent moduli ĉcep0 (elasto-plastic) or ĉcalg0 (algorithmic) to those obtained from FE computation. It is seen

that the overall response is much stiffer than it should. However, Fig. 3 shows that if Eshelby’s tensor is
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Fig. 1. MMC (v1 ¼ 20%) under tension. MT results when a ¼ 1 and Eshelby�s tensor is computed with anisotropic consistent tangent.

1694 I. Doghri, A. Ouaar / International Journal of Solids and Structures 40 (2003) 1681–1712



0

50

100

150

200

250

300

350

400

0 0.005 0.01 0.015 0.02 0.025

M
ac

ro
 s

tr
es

s 
[M

P
a]

Macro strain

MMC, vol. frac. = 20%, alpha = 0.5, anisotropic consistent tangent

strain inc. = 1.e-3
1.e-3
2.e-3

Fig. 2. MMC (v1 ¼ 20%) under tension. MT results when a ¼ 0:5 and Eshelby�s tensor is computed with anisotropic consistent tangent.

0

50

100

150

200

250

300

350

400

450

500

0 0.02 0.04 0.06 0.08 0.1 0.12

M
ac

ro
 s

tr
es

s 
[M

P
a]

Macro strain

MMC, vol. frac. = 20%, alpha = 0.5, macro strain inc. = 3.e-3

anisotropic continuum tangent
anisotropic consistent tangent

isotropic tangent
finite elements (ABAQUS)

Fig. 3. MMC (v1 ¼ 20%) under tension. MT results when a ¼ 0:5 and Eshelby�s tensor is computed with: (1) anisotropic continuum

tangent, (2) anisotropic consistent tangent and (3) isotropic tangent. Comparison with target FE unit cell results.

I. Doghri, A. Ouaar / International Journal of Solids and Structures 40 (2003) 1681–1712 1695



computed with an isotropic part of ĉcalg0 , then a good agreement with FE results is found. Those facts have

already been recorded in the literature (e.g., Bornert et al., 2001b; Gonzalez and Llorca, 2000; Masson

et al., 2000; Ponte Casta~nneda and Suquet, 2001; Suquet, 1997 and references therein), but there is still no

satisfying explanation for neither the problem nor the work around. It is difficult to tackle this problem
because the overall stiffness is a non-linear function of the strain concentration tensor, which itself is a non-

linear function of Eshelby�s tensor, and the latter can only be computed numerically if the moduli are

anisotropic.

Our contribution to this issue is the following. We proved in Section 5 that ĉcep0 \P "ĉcalg0 \P "ĉciso0 , and it is

seen from Fig. 3 that the predictions of the overall response follow the exact same order. So there is perhaps

a link that one could establish mathematically in the future.

Note that from now on, all elasto-plastic results which are reported in the following sections and figures

were obtained under the following conditions: algorithmic (consistent) tangent operators are used every-
where except in Eshelby�s tensor which is computed with an isotropic part of the tangent; time-integration

parameter is either a ¼ 1=2 (in most cases) or a ¼ 2=3 (for PMC, this sometimes allows to use larger time

increments without loss in accuracy).

9.2. A metal matrix composite

A metallic matrix (aluminum alloy) has the following properties: E0 ¼ 75 GPa, m0 ¼ 0:3, rY ¼ 75 MPa,

with power-law isotropic hardening (RðpÞ ¼ kpm) with k ¼ 416 MPa and m ¼ 0:3895. The matrix is

reinforced with spherical ceramic inclusions (E1 ¼ 400 GPa, m1 ¼ 0:2) of volume fraction v1. This

MMC has also been studied by Suquet (1997, p. 254), Gonzalez and Llorca (2000) and Segurado

et al. (2002).
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Fig. 4 shows predictions of macro-Young�s modulus obtained with various homogenization models and

with direct FE computations on a unit cell. Both MT and DI give excellent predictions, although the latter

performs better for higher values of v1. Note that in Figs. 4 and 10, values of v1 higher than the maximum

packing concentration ðv1Þmax are not physically meaningful. For spherical inclusions of uniform size,
ðv1Þmax � 0:75.

Fig. 5 shows numerical simulations with MT of macro-tension tests with imposed macro-strain for

various values of v1. The same tests were simulated with direct FE computations and the results are also

shown in Fig. 5. There is good agreement between the two sets of results.

The same MMC under tension was simulated in (Segurado et al., 2002) for v1 ¼ 30% using several

formulations and the results are plotted in Fig. 6 together with ours. The target results (label 2) were

obtained in (Segurado et al., 2002) by performing 3D FE computations on a cube containing 30 spheres. A

typical mesh had about 60,000 elements and 90,000 nodes. Twelve meshes were generated corresponding to
different arrangements of the spheres and BCs; the average response is plotted (label 2). Results obtained

with our incremental MT formulation are plotted with label 1 and those found with a secant (total-

deformation) formulation of MT have label 3. Finally, results with label 4 were obtained using a formu-

lation proposed by Suquet (1997) in which reference materials are defined by taking the phase-averages of

the second-order moments of the stress. It was shown that this approach is equivalent to Ponte Casta~nneda�s
variational formulation (Suquet, 1997; Ponte Casta~nneda, 1996; Ponte Casta~nneda and Suquet, 1998, 2001).

Comparison between the target results (label 2) and the others shows that our predictions (label 1)

overestimate the non-linear entry but then as hardening develops, they become very close to the target. On
the other hand, predictions with Suquet�s formulation (label 4), match the non-linear curvature closer but

diverge from the target as the strains increase. Finally, the classical secant formulation (label 3) overesti-

mates the stresses at all levels of plastic strains.
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In conclusion, it appears that our incremental MT formulation gives acceptable predictions and that the

accuracy increases with hardening.

In Fig. 7, for v1 ¼ 30%, a cyclic tension/compression test under imposed macro-strain (peak values:
�4%) is simulated with three methods: MT, DI and FE. It is seen that the two homogenization models

perform remarkably well, with MT doing better in the first monotonic stage, and DI giving a closer

agreement with FE afterwards. We have done similar simulations for all other values of v1 and the con-

clusions are the same. It is important to notice that our incremental formulation allows to simulate cyclic

plasticity while a secant formulation does not.

In order to further illustrate the robustness of our algorithms, we simulate macro-shear tests in Fig. 8 and

macro-bi-axial plane stress loads in Fig. 9. In the latter case, the initial yield envelope is plotted, and it was

defined as follows. Proportional macro-strain histories �11ðtÞ and �22ðtÞ are imposed such that their ratio is
constant (�33ðtÞ is computed by our DIGIMAT code so that r33ðtÞ ¼ 0). When the macro-stress ratio

r11ðtÞ=r22ðtÞ is no longer constant, than initial macro-yield is predicted (this criterion is probably too strong).

9.3. A polymer matrix composite

A polymer matrix (epoxy) has the following properties: E0 ¼ 3:16 GPa, m0 ¼ 0:35, rY ¼ 75:86 MPa, and

power-law isotropic hardening with k ¼ 32:18 MPa and m ¼ 0:26. The properties of the reinforcing

spherical elastic inclusions (in silica) are E1 ¼ 73:1 GPa and m1 ¼ 0:18. This composite was studied by

Tandon and Weng (1988) who used a secant (total deformation) theory; experimental results are also re-

ported in that reference.

Fig. 10 shows predictions of macro-Young�s modulus obtained with various homogenization models
and with FE computations. It is seen that the DI model gives excellent agreement with FE, and that the
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difference between MT and DI predictions for high values of v1 is more pronounced than for MMC (the

stiffness ratio E1=E0 of the two phases is 23.13 for PMC and 5.33 for MMC).

Figs. 11 and 12 show the results of macro-tension tests under imposed macro-strain. Our MT results are
compared against those of Tandon and Weng (1988) in Fig. 11 and excellent agreement is found. In Fig. 12,

our MT predictions are plotted against experimental data, and as in (Tandon and Weng, 1988) an excellent

match is found in all cases except v1 ¼ 0:52.
In Fig. 13, for v1 ¼ 42%, a cyclic tension/compression test under imposed macro-strain (peak values:

�4%) is simulated with three methods: MT, DI and FE. In the first monotonic phase of the loading history,

it seen that DI agrees perfectly with FE for the linear elastic response, but predicts an overly stiff plastic

response. The MT model, however, gives a poor prediction of the elastic stiffness but a satisfying simulation

of the plastic response. This observation continues to hold for the subsequent phases of the loading, and
overall MT predicts the plastic response much better than DI. We have done similar simulations for all

other values of v1 and the conclusions are the same. Again, note that the secant formulation is not able to

simulate cyclic plasticity, since in essence it is a non-linear elastic formulation.

Finally, macro-shear tests were simulated and the results obtained with MT are plotted in Fig. 14.

9.4. Chaboche’s cyclic plasticity model

The matrix material considered in this section is a low-carbon (AISI 1010) steel. The experimental data

were first identified with Chaboche�s cyclic plasticity model with the parameter values reported in (Doghri,

1993): E0 ¼ 210 GPa, m0 ¼ 0:3, rY ¼ 200 MPa, exponential-law isotropic hardening with saturation

(RðpÞ ¼ R1½1	 expð	mpÞ�) with R1 ¼ 2 GPa and m ¼ 0:26, non-linear kinematic hardening with para-
meters a ¼ 17 GPa and b ¼ 21.
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Next, the matrix material was modeled with classical J2 elasto-plasticity (no kinematic hardening) and a

new set of parameters was identified so that to obtain the same stress–strain curve in a monotonic tension

test up to 10% of total strain. The following parameters were found for isotropic hardening with saturation

(the values of E0, m0 and rY are unchanged): R1 ¼ 1286:68 MPa and m ¼ 19:9325.
Fig. 15 shows that the monotonic responses of the two models up to 10% strain are indeed identical.

However, for a cyclic tension/compression test under imposed strain (peak values �1%), it is seen in Fig.

15 that upon unloading and re-entry into plasticity, the answers become very different as Chaboche�s
model predicts a Baushinger effect while classical J2 finds opposite yield stresses in tension and com-

pression.

A hypothetical composite was designed by reinforcing the matrix with spherical elastic ceramic inclu-

sions (E1 ¼ 400 GPa and m1 ¼ 0:2).
Results of macro-uniaxial tension/compression of the composite (v1 ¼ 30%) are shown in Fig. 16 using

MT and the two material models for the matrix discussed above. Remarks made for the matrix alone (Fig.

15) hold for the composite (Fig. 16).

The same composite was simulated under macro-cyclic shear and the results are plotted in Fig. 17.

Again, the results and the comments are similar to those of Figs. 15 and 16.

10. Two-scale numerical simulations of composite structures

10.1. General considerations

We integrated our homogenization code DIGIMAT into the FE program ABAQUS through its user-

defined material interface UMAT. We adopted the following two-scale approach. A classical FE analysis is

carried out at macro-scale, and for each time interval ½tn; tnþ1� and each iteration of the global equilibrium

equations at macro-scale, and at each quadrature point of the macro-FE mesh, the homogenization module

UMAT/DIGIMAT is called. The data that are passed to it by ABAQUS are the total macro-strains �n and
� (as well as material constants and history information at tn). The DIGIMAT code returns the macro-

stress r and macro-tangent moduli c at tnþ1. The microstructure is not ‘‘seen’’ by ABAQUS but only by

DIGIMAT, which considers each quadrature point to be the center of a RVE which contains the hetero-
geneous microstructure.

As we shall see in the next subsections, this two-scale procedure allows to compute structures made of

composite materials within reasonable CPU time and memory usage on an ordinary workstation. The

results prove that the whole procedure converges and does so rapidly. The procedure is comprised of the

following algorithms:

ii(i) The homogenization algorithms (Sections 7.2 and 8.2), with as a subset the algorithms for elasto-plas-

ticity (time-integration and computation of consistent moduli).
i(ii) The algorithm for macro-stress constraints (Section 6.4) because the two examples use shell elements

which must satisfy macro-plane stress conditions.

(iii) The FE computations at macro-scale. The results show that the macro-tangent moduli c and the macro-

stresses r which are returned by the homogenization module DIGIMAT/UMAT allow ABAQUS to

converge rapidly to a solution in the FE sense.

Finally, we point out that our homogenization-based approach gives results with acceptable accuracy

while being much cheaper than a direct method (FE computations at macro- and micro-scales) on all
aspects: CPU time, memory usage and user time.
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10.2. MMC spoon under cyclic bending

A spoon made of the MMC material of Section 9.2 is built-in at both ends and subjected to a cyclic

displacement (peak values �4 mm) at mid-span, see Fig. 18. The mesh used 800 shell elements of type S4R5

and 891 nodes.

The load–displacement curves are shown in Fig. 19 for two cases: a homogeneous matrix material

(ABAQUS alone) and the composite material (v1 ¼ 30%, ABAQUS with UMAT/DIGIMAT interface).
The effect of the reinforcing phase on the overall response of the structure is obtained in a very cost-effective

way: the two-scale approach only takes 2889 s of CPU time on an average Compac (ex-Digital) DEC Alpha

workstation, and this is just 3.95 times more expensive than the homogeneous case.

10.3. PMC bottle under cyclic torsion

A bottle made of the PMC material of Section 9.3 is built-in at one end and subjected to cyclic torsion

under imposed axial rotation at the other end (peak values �0.5 rad), see Fig. 20. The mesh used 3290 shell

elements of type S4R and 3292 nodes.

The torque–rotation curves are shown in Fig. 21 for two cases: a homogeneous matrix material

(ABAQUS alone) and the composite material (v1 ¼ 42%, ABAQUS with UMAT/DIGIMAT interface).

The two-scale computation only takes 3980 s of CPU time on the same Compac DEC Alpha workstation,
and this is only 3.44 times the CPU cost of the homogeneous calculation.

Fig. 18. MMC spoon built-in at both ends, under cyclic displacement at mid-span. Two-scale procedure: FE program ABAQUS at

macro-scale and homogenization code DIGIMAT at micro-scale (with an instantaneous UMAT interface between ABAQUS and

DIGIMAT).
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Fig. 20. PMC bottle under cyclic torsion. Two-scale procedure: finite element program ABAQUS at macro-scale and homogenization

code DIGIMAT at micro-scale (with an instantaneous UMAT interface between ABAQUS and DIGIMAT).
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11. Conclusions and future work

In this paper, we studied micro/macro-modeling and numerical simulation of two-phase elasto-plastic

composite materials and structures.

We extended to non-linear, rate-independent models two homogenization schemes: MT and a DI. The

latter is Lielens� version (Chapter 9 in (Lielens, 1999)) of the original Nemat-Nasser and Hori (1999, Section

10).
The extension of homogenization schemes is based on a Hill-type incremental formulation which allows

the simulation of unloading and cyclic loadings.

The formulation allows to handle any rate-independent model for each phase. It was tested with two

different material models: classical J2 elasto-plasticity and Chaboche�s model with non-linear kinematic and

isotropic hardenings.

We studied the crucial issue of tangent moduli: elasto-plastic (or ‘‘continuum’’) versus algorithmic (or

‘‘consistent’’), and anisotropic versus isotropic. We applied two methods of extraction of isotropic parts of

anisotropic operators. We compared mathematically the stiffnesses of various tangent moduli, as this might
give an explanation for the overall predictions obtained when Eshelby�s tensor is computed with anisotropic

(continuum or consistent) or isotropic moduli.

All rate equations were discretized in time using implicit schemes at two levels: (i) the constitutive models

and (ii) the homogenization schemes. In the latter case, we showed the importance of the time-integration

parameter (a) on the accuracy of the overall response. The results that we reported in this paper were all

obtained with a ¼ 1=2 (mid-point rule) or a ¼ 2=3.
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We tested the robustness of the formulation and its implementation by considering at least two com-

posites with completely different properties: a MMC and a PMC, and running several discriminating nu-

merical simulations: cyclic macro-tension/compression, cyclic macro-shear and macro-bi-axial loadings.

In many cases, the results were compared with those of direct computations in which the BVP for each
RVE is solved directly using FEs. For MMC, our results were also compared to predictions obtained with

other formulations and reported in (Segurado et al., 2002), namely: 3D FE simulations, a classical secant

MT formulation and Suquet�s formulation where reference materials are defined with the phase-averages of

the second-order moments of stress. Good agreement was found between our predictions and the 3D FE

targets, and the accuracy increases with increasing hardening.

The results showed that DI gives an excellent prediction of the elastic stiffness but that the plastic res-

ponse is generally better predicted by MT.

Finally, our homogenization code DIGIMAT was integrated into the FE program ABAQUS using a
user material interface UMAT. A two-scale method was used: a FE model at macro-scale, and at each

quadrature point of the macro-FE mesh, the homogenization module UMAT/DIGIMAT is called. The

procedure allows to compute real-life structures made of composite materials within reasonable CPU time

and memory usage. Two examples were shown: a MMC spoon built-in at both ends and subjected to cyclic

bending and a PMC bottle under cyclic torsion.

The results reported in this paper are based on two assumptions: (1) reference moduli are computed with

average strains in each phase; and (2) Eshelby�s tensor is computed with an isotropic part of the reference

matrix moduli.
Although good results were obtained, there is a need for a better understanding of the two issues, and it

would be interesting to implement some other proposals from the literature and compare their predictive

capabilities.

This paper only dealt with rate-independent small-strain composite materials, with inclusions having the

same shape, material properties and orientation. Numerical results were only presented for spherical in-

clusions.

Firstly, we are currently studying the influence of the shape and orientation of inclusions on the overall

properties of two-phase elasto-plastic composites (Friebel, 2002; Doghri and Friebel, 2003).
Secondly, we intend to extend the formulation and algorithms to finite-strain elasto-plastic composites.

Hill (1972) and Nemat-Nasser (1999) showed that the finite-strain formulation follows the same lines as the

infinitesimal-strain case provided that one uses the following ingredients: (i) work with the reference

configuration; (ii) use the nominal stress PT as a stress measure; (iii) use the rate of deformation gradient _FF
as a strain rate measure.

Thirdly, we will turn our attention to elasto-viscoplastic composites. The earlier formulations of

Hutchinson (1976) and Molinari et al. (1987), although successful, are based on several restrictive as-

sumptions. We are looking for a general formulation which would work with any elasto-viscoplastic model
under general loadings (including cyclic ones). With this perspective, it seems worthwhile to investigate the

recent proposal of Masson et al. (2000). In the authors� so-called ‘‘affine method’’, homogenization models

are formulated using instantaneous ‘‘linear thermoelastic’’ solids.
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Fig. 22. Unit cell used for FE computations assuming a periodic microstructure and axisymmetric loadings.
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Fig. 23. MMC (v1 ¼ 30%) under macro-tension. Comparaison of finite element results obtained with two models: (1) a unit cell as-
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(Segurado et al., 2002).
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Appendix A. Unit cell for FE computations

Some macro-tension/compression results were validated against FE computations of a unit cell, as-

suming that the composite has a periodic microstructure with a square arrangement. The cell has a plane
geometry in the (r; z) plane, where r is the radial coordinate and z the coordinate along the symmetry axis.

The cell geometry is shown in Fig. 22; z- and r-coordinate lines correspond to vertical and horizontal

segments, respectively. Along the symmetry axis (left vertical segment DA), radial displacement is zero.

Along the bottom horizontal line AB, the vertical displacement is zero. Vertical displacements are imposed

on the top horizontal side CD while the right vertical side BC is constrained to have the same radial

displacement. The mesh used 3002 nodes and 963 ABAQUS axisymmetric CAX8R elements.

For the MMC studied in Section 9.2 (with v1 ¼ 30%) a macro-tension test was simulated in (Segurado

et al., 2002) by performing 3D FE computations on a cube containing 30 spheres. A typical mesh contained
about 60,000 elements and 90,000 nodes. Twelve meshes were generated corresponding to different ar-

rangements of the spheres and BCs and the average response is plotted in Fig. 23, together with the FE

curve obtained with our unit cell. The figure shows that the unit cell over-predicts the macro-response by

comparison with the more accurate 3D FE computations on a cubic RVE containing many spheres without

a periodic distribution.
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